

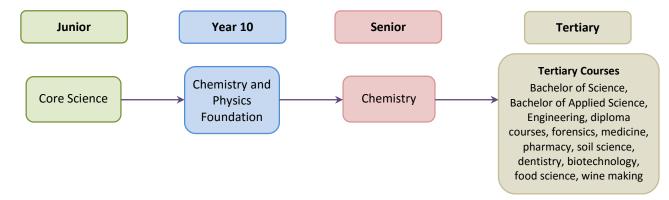
Senior Chemistry

Overview

An understanding of chemistry is relevant to a range of careers, including those in forensic science, environmental science, engineering, medicine, pharmacy and sports science. Additionally, chemistry knowledge is valuable in occupations that rely on an understanding of materials and their interactions, such as art, winemaking, agriculture and food technology. Some students will use this course as a foundation to pursue further studies in chemistry, and all students will become more informed citizens, able to use chemical knowledge to inform evidence-based decision making, and engage critically with contemporary scientific issues.

Chemistry is the study of matter and its transformations. Students who complete the chemistry course improve their scientific literacy and numeracy and develop critical and creative thinking skills. Students should study chemistry to enhance their understanding of the universe and as a stepping stone to further study. Chemistry will immerse students in both the practical and the conceptual aspects of the discipline.

The study of Chemistry requires an amount of maths and students who have performed well in junior school mathematics and sciences, and who can think logically do well in this subject. Students who have studied Science Investigations or the Archimedes Project in year 10 will be well prepared for Senior Chemistry.



Chemistry is an essential pre-requisite for many tertiary science courses as well as engineering. It is also recommended for many others.

Topics studied

Elements, Ions	This introductory unit lays the foundations for senior chemistry
and the	by introducing students to chemical concepts such as atoms,
Periodic table	bonding, the mole concept and chemical equations.
Water	This is a contextualised unit focusing on water as a universal
	solvent. Laboratory skills will be developed through an
	experimental investigation into ionic solutions and through an
	investigation of the chemistry of wine making.
Redox	Students will be introduced to the structure of metals, oxidation
Reactions	and reduction and its basic application to corrosion. This unit is
	a foundation for the metals context studied in Year 12.
The	This is a contextualised unit focusing on the atmosphere and
Atmosphere	the gases which comprise it. Laboratory skills will be developed
	through an experimental investigation into gas laws.
Introduction to	Students will be introduced to organic chemistry with concepts
Organic	including functional groups, molecular structures and
Chemistry	nomenclature. This unit is a foundation for the fuels and
	forensics contexts studied in Year 12.
Metals	This is a contextualised unit focusing on the properties and uses
	of metals and electrochemistry. Laboratory skills will be
	developed through an experimental investigation into the use
	of metals.
Fuels	This is a contextualised unit focusing on fuels, organic chemistry
	and thermodynamics. Laboratory skills will be developed the
	production of ethanol and biodiesel as alternatives for
	conventional fuels.
Forensics	This is a contextualised unit focusing on the identification of
	organic compounds. Students will study various techniques
	used to identify forensic evidence including IR, UV & Vis
	spectroscopy, mass spectrometry and chromatography.
Designing a	This is a practical unit where students design an experiment and
Cold Pack	prepare a report that answers a research question regarding
	the best design for a chemical cold pack.

Study Pathways

